1,112 research outputs found

    Perception and reconstruction of two-dimensional, simulated ego-motion trajectories from optic flow.

    Get PDF
    A veridical percept of ego-motion is normally derived from a combination of visual, vestibular, and proprioceptive signals. In a previous study, blindfolded subjects could accurately perceive passively travelled straight or curved trajectories provided that the orientation of the head remained constant along the trajectory. When they were turned (whole-body, head-fixed) relative to the trajectory, errors occurred. We ask here whether vision allows for better path perception in similar tasks, to correct or complement vestibular perception. Seated, stationary subjects wore a head mounted display showing optic flow stimuli which simulated linear or curvilinear 2D trajectories over a horizontal ground plane. The observer's orientation was either fixed in space, fixed relative to the path, or changed relative to both. After presentation, subjects reproduced the perceived movement with a model vehicle, of which position and orientation were recorded. They tended to correctly perceive ego-rotation (yaw), but they perceived orientation as fixed relative to trajectory or (unlike in the vestibular study) to space. This caused trajectory misperception when body rotation was wrongly attributed to a rotation of the path. Visual perception was very similar to vestibular perception

    Biological motion cues aid identification of self-motion from optic flow but not heading detection

    Get PDF
    © 2017 The Authors. When we move through the world, a pattern of expanding optic flow is generated on the retina. In completely rigid environments, this pattern signals one's direction of heading and is an important source of information for navigation. When we walk towards an oncoming person, the optic environment is not rigid, as the motion vectors generated by the other person represent a composite of that person's movement, his or her limb motion, and the observer's self-motion. Though this biological motion obfuscates the optic flow pattern, it also provides cues about the movement of other actors in the environment. It may be the case that the visual system takes advantage of these cues to simplify the decomposition of optic flow in the presence of other moving people. The current study sought to probe this possibility. In four experiments self-motion was simulated through an environment that was empty except for a single, walking point-light biological motion stimulus. We found that by using biological motion cues, observers were able to identify the presence of selfmotion despite the lack of stable scene information. However, when estimating heading based on these stimuli, the pattern of observer heading estimates could be approximately reproduced by computing the vector sum of the walker's translation and the stimulated selfmotion. This suggests that though biological motion can be used to disentangle self-motion in ambiguous situations, optic flow analysis does not use this information to derive heading estimates

    Saccadic Adaptation Is Associated with Starting Eye Position

    Full text link
    Saccadic adaptation is the motor learning process that keeps saccade amplitudes on target. This process is eye position specific: amplitude adaptation that is induced for a saccade at one particular location in the visual field transfers incompletely to saccades at other locations. In our current study, we investigated wether this eye position signal corresponds to the initial or to the final eye position of the saccade. Each case would have different implications on the mechanisms of adaptation. The initial eye position is not directly available, when the adaptation driving post saccadic error signal is received. On the other hand the final eye position signal is not available, when the motor command for the saccade is calculated. In six human subjects we adapted a saccade of 15 degree amplitude that started at a constant position. We then measured the transfer of adaptation to test saccades of 10 and 20 degree amplitude. In each case we compared test saccades that matched the start position of the adapted saccade to those that matched the target of the adapted saccade. We found significantly more transfer of adaptation to test saccades with the same start position than to test saccades with the same target position. The results indicate that saccadic adaptation is specific to the initial eye position. This is consistent with a previously proposed effect of gain field modulated input from areas like the frontal eye field, the lateral intraparietal area and the superior colliculus into the cerebellar adaptation circuitry

    Peri-saccadic compression to two locations in a two-target choice saccade task

    Get PDF
    When visual stimuli are presented at the onset of a saccadic eye movement they are seen compressed onto the target location of the saccade. This peri-saccadic compression is believed to result from internal feedback pathways between oculomotor and visual areas of the brain. This feedback enhances vision around the saccade target at the expense of localization ability in other regions of the visual field. Although saccades can be targeted at only one object at a time, often multiple potential targets are available in a visual scene, and the oculomotor system has to choose which target to look at. If two targets are available, preparatory activity builds-up at both target locations in oculomotor maps. Here we show that, in this situation, two foci of compression develop, independent of which of the two targets is eventually chosen for the saccade. Our results suggest that theories that use oculomotor feedback as efference copy signals for upcoming eye movements should take the possibility into account that multiple feedback signals from potential targets may occur in parallel before the execution of a saccade

    Translation and articulation in biological motion perception

    Full text link
    Recent models of biological motion processing focus on the articulational aspect of human walking investigated by point-light figures walking in place. However, in real human walking, the change in the position of the limbs relative to each other (referred to as articulation) results in a change of body location in space over time (referred to as translation). In order to examine the role of this translational component on the perception of biological motion we designed three psychophysical experiments of facing (leftward/rightward) and articulation discrimination (forward/backward and leftward/rightward) of a point-light walker viewed from the side, varying translation direction (relative to articulation direction), the amount of local image motion, and trial duration. In a further set of a forward/backward and a leftward/rightward articulation task, we additionally tested the influence of translational speed, including catch trials without articulation. We found a perceptual bias in translation direction in all three discrimination tasks. In the case of facing discrimination the bias was limited to short stimulus presentation. Our results suggest an interaction of articulation analysis with the processing of translational motion leading to best articulation discrimination when translational direction and speed match articulation. Moreover, we conclude that the global motion of the center-of-mass of the dot pattern is more relevant to processing of translation than the local motion of the dots. Our findings highlight that translation is a relevant cue that should be integrated in models of human motion detection

    Heading perception from optic flow in the presence of biological motion

    Get PDF
    © 2019 Association for Research in Vision and Ophthalmology Inc. We investigated whether biological motion biases heading estimation from optic flow in a similar manner to nonbiological moving objects. In two experiments, observers judged their heading from displays depicting linear translation over a random-dot ground with normal point light walkers, spatially scrambled point light walkers, or laterally moving objects composed of random dots. In Experiment 1, we found that both types of walkers biased heading estimates similarly to moving objects when they obscured the focus of expansion of the background flow. In Experiment 2, we also found that walkers biased heading estimates when they did not obscure the focus of expansion. These results show that both regular and scrambled biological motion affect heading estimation in a similar manner to simple moving objects, and suggest that biological motion is not preferentially processed for the perception of selfmotion

    Predicting protein functions with message passing algorithms

    Full text link
    Motivation: In the last few years a growing interest in biology has been shifting towards the problem of optimal information extraction from the huge amount of data generated via large scale and high-throughput techniques. One of the most relevant issues has recently become that of correctly and reliably predicting the functions of observed but still functionally undetermined proteins starting from information coming from the network of co-observed proteins of known functions. Method: The method proposed in this article is based on a message passing algorithm known as Belief Propagation, which takes as input the network of proteins physical interactions and a catalog of known proteins functions, and returns the probabilities for each unclassified protein of having one chosen function. The implementation of the algorithm allows for fast on-line analysis, and can be easily generalized to more complex graph topologies taking into account hyper-graphs, {\em i.e.} complexes of more than two interacting proteins.Comment: 12 pages, 9 eps figures, 1 additional html tabl

    The influence of image content on oculomotor plasticity

    Full text link
    When we observe a scene, we shift our gaze to different points of interest via saccadic eye movements. Saccades provide high resolution views of objects and are essential for vision. The successful view of an interesting target might constitute a rewarding experience to the oculomotor system. We measured the influence of image content on learning efficiency in saccade control. We compared meaningful pictures to luminance and spatial frequency–matched random noise images in a saccadic adaptation paradigm. In this paradigm a shift of the target during the saccades results in a gradual increase of saccade amplitude. Stimuli were masked at different times after saccade onset. For immediate masking of the stimuli, as well as for their permanent visibility, saccadic adaptation was similar for both types of targets. However, when stimuli were masked 200 ms after saccade onset, adaptation of saccades directed toward the meaningful target stimuli was significantly greater than that of saccades directed toward noise targets. Thus, the percept of a meaningful image at the saccade landing position facilitates learning of the appropriate parameters for saccadic motor control when time constraints exist. We conclude that oculomotor learning, which is traditionally considered a low-level and highly automatized process, is modulated by the visual content of the image

    Perception of biological motion from size-invariant body representations

    Full text link
    The visual recognition of action is one of the socially most important and computationally demanding capacities of the human visual system. It combines visual shape recognition with complex non-rigid motion perception. Action presented as a point-light animation is a striking visual experience for anyone who sees it for the first time. Information about the shape and posture of the human body is sparse in point-light animations, but it is essential for action recognition. In the posturo-temporal filter model of biological motion perception posture information is picked up by visual neurons tuned to the form of the human body before body motion is calculated. We tested whether point-light stimuli are processed through posture recognition of the human body form by using a typical feature of form recognition, namely size invariance. We constructed a point-light stimulus that can only be perceived through a size-invariant mechanism. This stimulus changes rapidly in size from one image to the next. It thus disrupts continuity of early visuo-spatial properties but maintains continuity of the body posture representation. Despite this massive manipulation at the visuo-spatial level, size-changing point-light figures are spontaneously recognized by naive observers, and support discrimination of human body motion

    Covert Shift of Attention Modulates the Ongoing Neural Activity in a Reaching Area of the Macaque Dorsomedial Visual Stream

    Get PDF
    Background: Attention is used to enhance neural processing of selected parts of a visual scene. It increases neural responses to stimuli near target locations and is usually coupled to eye movements. Covert attention shifts, however, decouple the attentional focus from gaze, allowing to direct the attention to a peripheral location without moving the eyes. We tested whether covert attention shifts modulate ongoing neuronal activity in cortical area V6A, an area that provides a bridge between visual signals and arm-motor control. Methodology/Principal Findings: We performed single cell recordings from 3 Macaca Fascicularis trained to fixate straight-head, while shifting attention outward to a peripheral cue and inward again to the fixation point. We found that neurons in V6A are influenced by spatial attention. The attentional modulation occurs without gaze shifts and cannot be explained by visual stimulations. Visual, motor, and attentional responses can occur in combination in single neurons. Conclusions/Significance: This modulation in an area primarily involved in visuo-motor transformation for reaching may form a neural basis for coupling attention to the preparation of reaching movements. Our results show that cortical processes of attention are related not only to eye-movements, as many studies have shown, but also to arm movements, a finding that has been suggested by some previous behavioral findings. Therefore, the widely-held view that spatial attention is tightly intertwined with - and perhaps directly derived from - motor preparatory processes should be extended to a broader spectrum of motor processes than just eye movements
    • …
    corecore